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Abstract. Topological structures in gauge theories, e.g. monopoles and instantons, may be 
classified by either Chern classes or winding numbers. On the other hand, Wess-Zumino 
terms in sigma models are winding number densities and there exists a common mathemati- 
cal structure for the instanton and the Wess-Zumino term in the two-dimensional O(4) 
sigma model. The same formalism describes the skyrmion topological Lagrangian in the 
four-dimensional SU(3)  sigma model 

1. Introduction 

The past fifteen years have witnessed the rise to prominence of various topological 
notions in physics. Important among these are Chern classes, defined on even- 
dimensional spherical spaces, and winding numbers. Chern classes on S2 are used to 
classify Dirac magnetic monopoles, and those on S4 to classify instantons [l]. The 
S2 + S2 winding number serves to classify the non-Abelian ('t Hooft-Polyakov) mag- 
netic monopole [2] as well as the Belavin-Polyakov soliton [3] in the O(3) sigma 
model and, as was recognised by the original authors [4], the S 3  + S3 winding number 
describes the instanton. In more recent years Witten [5] has related the SU(3) skyrmion 
to the S5 + SU(3) winding number, which appears as a Wess-Zumino term and Curtright 
and co-workers [6] have remarked on the importance of a Wess-Zumino term in the 
two-dimensional sigma model, which gives rise to torsion in the internal space. This 
term takes the form of an S3 + S 3  winding number. In this paper we describe a general 
framework which relates these two topological quantities and in particular we find a 
natural place for torsion in the two-dimensional O(4) sigma model. 

The general relation between the Chern class over S2" and the winding number 
, or more generally S2"-' + G/H where G and H are Lie groups, is 

outlined in § 2. In 0 3 this is applied to the Dirac magnetic monopole and in § 4 to 
the instanton. In 0 5 it is shown that in a two-dimensional spacetime the Wess-Zumino 
term in the O(4) sigma model is an equivalent structure. In 0 6 it is seen how the same 
analysis reveals a natural place for the skyrmion in four-dimensional spacetime. In 
this case, however, the Wess-Zumino term does not have the effect of endowing the 
internal space with torsion. The notion that there are two ways of classifying non-trivial 
topological structures is found in the work of Eguchi er a1 [ 11 and its connection with 
anomalies and the Skyrme model has also been clarified by Chou et aZ[7] and Zumino 
er a1 [8]. 

s 2 n - l +  s 2 n - 1  
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2. Chern classes and winding numbers 

If  G is a Lie group with group element g the connection 1-form 
w = g-’ d g  + g-’Ag = g-’(d + A)g (2.1) 

is invariant under x-dependent group transformations g + hg so long as A transforms 
as 

A + hAh-’ - (dh)  h -I. 

A is a Lie-algebra-valued 1-form which may be written as 

A U  
2i 

A = A i  -dx” 

with Tr(A“A b ,  = 2 8 , b .  The curvature 2-form is defined by 

Q = dw + w 2  

where d is the exterior derivative operator and wedge products 
(2.1) and (2.4) we have 

A ”  
21 

R = g-’Fg F = dA + A’ = +FE, 7 dx” dx”. 

(2.4) 
are implied. From 

The quantities A: and F i Y  are the usual Yang-Mills potential and field tensor. 
Now consider the 2n-dimensional sphere S2” (see figure 1). It may be divided into 

upper and lower hemispheres HZ,” and H?’ which are, topologically speaking, 
equivalent to S2“ with the S pole ( N  pole) excised. The intersection of H:” and H? 
includes the ‘equator’ S 2 “ - ’ .  We are concerned with Chern classes defined on S2”. 
The total Chern form c(R) is defined by [ l ]  

c ( R ) = d e t [ l + ( i / 2 ~ ) R ] =  l + R 2 ( R ) + R 4 ( R ) + .  . . . (2.6) 
Here R, is a 2-form, R4 a 4-form, etc. The first three Chern forms are 

R2 = ( i / 2 ~ ) T r  F 

R4=(1/87r2)[Tr F2-(Tr  F)2] (2.7) 
R6=(i /48r3)[-2Tr F3+3(Tr F2)(Tr  F ) - ( T r  F)3]  

where F has appeared rather than R because from (2.5) the g factor cancels out 
because of the trace. The Chern class c, is simply the integral of a,, over S2” 

c 

and it is integral. 

52” 

Figure 1. The 2n-dimensional sphere S2” I S  divided into upper and lower hemispheres 
HF and HZ” The region of overlap of H:” and H?” includes the equator S2“-’ 
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By virtue of the Bianchi identity the Chern forms are closed 

dR2" = 0. (2.9) 
By PoincarC's lemma this means that locally a,, can be written as the exterior derivative 
of a (2n - 1)-form w , " - ~ ,  the Chern-Simons form 

Neither the Chern nor the Chern-Simons form is defined globally over S 2 " ;  indeed, 
neither are F nor A. On splitting S2" up into the overlapping patches H:" and H?' , 
however, A+ and A - ,  F, and F- may be defined in each patch, and each related to 
the other by a gauge transformation S 

R2,, = dw2,,-, . (2.10) 

A- = S-'A+S + S - I  dS  (2.11) 
F- = S-'F+S. (2.12) 

Under such gauge variations, Ag, the Chern-Simons form behaves as (ignoring constant 
coefficients) 

AgwZn-, = dwZn-,+ L2"-' (2.13) 
where w ~ ~ - ~  is some (2n -2)-form and 

L = S-I d S  (2.14) 
is the Cartan-Maurer form. LZn-l is in fact a winding number density, so that (2.13) 
yields a winding number when integrated over SZn- l .  Because of Stokes' theorem, the 
integral over S2"-' of the first term on the right-hand side of (2.13) vanishes since 
S2"-' has no boundary. Equations (2.10) and (2.13) are sometimes referred to as the 
descent equations. 

When infinitesimal transformations are considered (2.13) becomes, in the notation 
of Zumino et al [8], 

The form w:,-* is related to the non-Abelian anomaly, just as n2,, is related to the 
chiral anomaly. 

Summarising, the general relation between Chern classes and winding numbers 
comes from putting together the above equations (and ignoring numerical coefficients): 

A , W ~ , - ~  = d ~ : , , - ~ .  

r 

d ~ ~ , - ~ +  L*"-' = J  s 2 " - l  

L 2 n - l .  =i s 2 " - 1  
(2.15) 
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The minus sign in the fourth line arises because the equator S2n-1 bounds H2,” and 
H1” in opposite directions. 

Equation (2.15) shows that there are two ways of classifying a G-bundle; as a 
Chern class over S2”,  or as a winding number over S2n-1. Below we shall review, for 
the cases n = 1 and n = 2, how these descriptions apply to the magnetic monopole and 
the instanton. In the following sections we shall then see how they may also be applied 
to the Wess-Zumino terms in the non-linear sigma models, in the cases n = 2 and n = 3. 

3. The magnetic monopole 

Here n = 1 and G = U( 1);  we are dealing with electromagnetic potentials and field 
strengths defined on a sphere S’ ‘surrounding the origin’ (which of course does not 
belong to the space). From (2.5) and (2.7) the first Chern form is 

O2 = (i/277)F = (i/277) dA (3.1) 

hence in this particular case (where G is Abelian) A is a Chern-Simons form. On H i  
and H: A assumes the values 

A+ = ieg( 1 -cos e )  d 4  

A- = -ieg( 1 +cos 0 )  d d  

for H: 
for H? (3.2) 

corresponding to a magnetic pole of charge g. ( In  this section only, g stands for 
magnetic charge and not a group element.) A- and A+ are related by the gauge 
transformation (2.1 1) with 

S = exp(-2ieg4) (3.3) 

A- -A+ = -2ieg d 4  = S-’  dS. 

then 

(3.4) 

In this case F+ = F-:  

dA, = dA- = ieg sin 0 dB d d  = F. (3.5) 

The magnetic field 2-form is single-valued over S 2 ;  this is not true in the general case. 
From (3.1) and (3.5) the first Chern form is 

R2 = -( 1/27r)eg sin 0 dB d 4  

and the first Chern class is therefore 

cl  = -  R2=2eg.  I 
The requirement that c1 is integral is the Dirac quantisation condition 

eg = n/2. (3.6) 
This is the first way of classifying the bundle. On the other hand the Maurer-Cartan 
form is 

L = -is-’ d S  = 2eg d 4  
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so the SI+ SI winding number is, from (2.15), 

lsl L = 47reg = n(27r) 

also yielding the Dirac condition (3.6). 

4. The instanton 

Here n = 2 and G = SU(2); we consider SU(2) gauge fields on S4. The matrices Aa in 
(2.3) can be taken to be the Pauli matrices, so Tr F = 0 and the second Chern class 
is, from (2.7) and (2.8), 

1 
87r 

c2 = 7 Is. Tr F 2 .  

This is simply minus the instanton number k 

k = -c - -- 1 lS4 Tr F2.  
87r2 

2 -  

To describe the instanton by an S 3  + S 3  winding number, we first find the Chern-Simons 
form o3 whose exterior derivative is Tr F2.  We have 

Tr F 2  = d Tr( FA -$A3)  (4.3) 

so that (see (2.15)) 

Tr(F+A+-;A:)-Tr(F-A--$A?). 

Now using (2.11) and (2.12) we have 

Tr( F+A+ -$A: - F - A -  +$A?) = TdL3 - d(A+L) 

giving 

1 1 
c2 = 3 js3 Tr L3 = Js3 Tr( S-’ dS)3. 

This expresses the Chern class as a winding number; for the BPST instanton k = 1 so 
the winding number S 3  (group space)-, S3  (parameter space) is (minus) one. 

5. Two-dimensional O(4) sigma model 

This is a scalar field theory of four scalar fields in two spacetime dimensions subject 
to the constraint 

I#& = &+ &+ &+ 4; = 1. (5.1) 
This constraint is invariant under O(4) transformations of 4i; more strictly it defines 
a spherical space S3  which is a coset space 0 ( 4 ) / 0 ( 3 ) .  The kinetic energy Lagrangian 

ZI = (1/2AZ)aw4‘a”4i ( 5 . 2 )  
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with p = 0, 1 and i = 0, 1 ,2 ,3  may be rewritten [9], taking into account the constraint 
(5.1L 

31 = (1/2A2)gabag4"dr~b (5.3) 

with a, b = 1,2,3 and 

gab = a a b  + 4 ' 4  b /  ( 1 - d2) 
where 4* = 4;+ 4;+ 4 ; .  This metric has determinant 

= det gab = ( 1  - 42)-1. 
In addition to 2, we may consider a topological Lagrangian in the shape of a 

Wess-Zumino term defined in three dimensions. This is an S 3 +  S3 winding number 
density written as ( p ,  v, A = 0, 1 ,  2):  

where H' is a hemisphere of S3 and 

L = S-I d S  S = exp(i4"a") 

and hence 

Tr L3 = 2~~~~ d 4 a  d d b  d 4 '  

giving 

(5.7) 

( 5 . 8 )  

(5 .9 )  

(5.10) 

The constant a will be found below. It will be recognised that apart from a, the 
right-hand side of (5.9) is an S 3 +  S3 winding number. Now writing 

zwz=a w3 (5.11) I 
where w 3  is a 3-form, we search for a 2-form w 2  with 

1 
d w 2 = w 3 = y & T r L 3 .  2 4 ~  

We have 

d Tr[ (In S )  L2] = Tr L3 

so let us assume that w2 can be written in the form 

w 2 =  ( 1 / 2 4 ~ * ) f ( 4 ~ )  Tr[(ln S)L2] 

= ( 1 / 1 2 ~ ~ ) f ( 4 ~ ) ~ " ~ ' 4 "  d 4 b  d4'. 

Equation (5 .1  1) gives 
2f'4" d42Tr[ ( lnS)L2]+fTrL3=( l -42 ) -1 '2TrL3  

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 
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and the Wess-Zumino term is 

with 

eab = E a b c C $ f f ( c p ) .  

(5.17) 

(5.18) 

(5 .19 )  

(5.20) 

This result agrees with that obtained by Curtright and co-workers [ 6 ]  who call eab a 
‘torsion potential’ for reasons to be seen below. 

The Wess-Zumino action is multivalued, as was first pointed out in this context 
by Witten [ 5 ] .  In continuing the action in (5.19) from two-dimensional spacetime ( S 2 )  
to three dimensions, we may continue to either H: or H? and these cases will differ 
by a minus sign, since S2  bounds them in different directions. Quantum theory involves 
exp(iS) so the continuation is unambiguous if 

where S3 = H ,  U H- and N is an integer. If we normalise ZWz so that 
r 

then ( 5 . 2  

The total 

w 3 =  1 J s3 

(5.21) 

(5.22) 

) gives 

a = 2 r N .  ( 5 . 2 3 )  

action is then 

with 

7 = N A 2 / 2 r .  (5.25) 

It is straightforward to show that the equation of motion resulting from (5.24) is 

( f jaba ,  +GC4:” + E”YS:C4:”)4:” = 0 (5.26) 

where 

s z c  = gadSdbc Sdbc = f 7 ) ( e d b , c - e c b , d - e d c , b ) .  (5 .27)  
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Equation (5.26) is a geodesic equation with r& + SEc playing the role of a connection 
coefficient. The antisymmetry of S &  indicates that it behaves as a torsion tensor. From 
(5.17) and (5.20) we have 

(5.28) 

which, since is a permutation symbol, has the transformation properties of a 
contravariant tensor. 

We conclude this section by giving an axiomatic treatment of torsion in group 
space in the non-linear sigma model. and by reproducing the results of Curtright et a1 
on parallelisable manifolds. In our group space the basis 1-form is d 4 a  

e" = d&". (5.29) 

S a b c  = , , ,g-1/2Eabc 

There is a connection 1-form w t  and a torsion 2-form r a  defined by 

r a  =dea  + wzeb. (5.30) 

In the absence of torsion ra  = 0 and U :  is determined in terms of e". In any case the 
curvature 2-form is 

R: =do:  + (5.31) 

The Cartan-Maurer form (5.7) becomes 
L = eaT" 

and since it obeys dL = - L2 we have 
dec = -iEabceaeb. 

In the absence of torsion (5.30) then gives 

To( = 0. w a b  - 1 abc 
- - T E  e, 

(5.32) 

(5.33) 

(5.34) 

As a simple ansatz, let us suppose, with Wu and Zee [lo], that in the presence of 
torsion this simply becomes modified to 

w a b  = -iKEabCeC. (5.35) 

We now want to find the values of K which give a parallelised manifold, i.e. one with 
Rab =O. Substituting (5.35) into (5.31) and using (5.33) gives 

(5.36) - ? E  e e +iK2EaCdECbeedee.  ab = +.-.-abc 1 cde d e 

Applying the Jacobi identity to the second term in Rab and using the fact that Rab  = - R 
gives, for this term, 

R;b = (K2/8)EabCECde e e  d e 

and hence 
Rab = i K  (1  - f K  ) E abcE cdeedee 

We see that Rab = 0 if K = 0 or K = 2, giving respectively 

for K = 0 

for K = 2. 

= - t E a b c  b c w a b  = 0 e e  
a -1 abc b c r - 2 ~  e e  ab = - E  abc e, 

These two cases correspond to a torsion tensor 
S a b c  = &g-1/2Eabc.  

(5.37) 

(5.38) 

(5.39) 

(5.40) 
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The sign ambiguity corresponds to the values of the torsion on Ht, since w3 is not 
defined globally on S3. Comparing (5.40) and (5.28) we see that we get a parallelised 
manifold if 7) = 1, i.e. if 

h 2 = 2 ? r / N  (5.41) 

as found in [6]. This may be regarded as another type of quantisation, resulting from 
the multivalued Wess-Zumino action. 

It may be worth remarking that the reason the torsion appears directly in the action 
in this theory is that the theory is in two spacetime dimensions. Torsion is a 2-form 
and a 2-form in field space (as in (5.19)) can be transposed into a 2-form in spacetime 
(as in (5.27)) when spacetime has two dimensions. The torsion contribution to the 
action in general relativity is of course quite different, since the action there must be 
a 4-form. Similarly, in the four-dimensional SU(3) skyrmion model to be discussed 
below, the effect of torsion in the group manifold does not have such a direct connection 
with the Wess-Zumino term as it has in the two-dimensional O(4) sigma model. 

6. S6 and the SU(3) skyrmion 

The Skyrme model [ l l] ,  in which baryons are represented as solitons in a non-linear 
sigma model, has undergone a revival in recent years through the work of Witten [5] 
who showed that the Wess-Zumino term in four dimensions ensured that the solitons 
(skyrmions) are fermions. The Wess-Zumino term is an S5 + S5,  or more precisely 
S5+ SU(3) (the group space of SU(3) being locally isomorphic to S5 x S 3 ) ,  winding 
number. It therefore fits naturally into our scheme; that is, we consider an SU(3) 
gauge field on S6, which may be characterised by a third Chern class or an S 5 +  S5 
winding number, as in (2.15). This observation has already been made by Chou and 
coworkers [7]. It is included here briefly to demonstrate its essential similarity with 
the two-dimensional O(4) sigma model and thereby to give a more explicit form of 
the Wess-Zumino term. 

In the notation of 9 2, n = 3 and A and F are SU(3) matrix fields. The third Chern 
class is from (2.7) 

-i 
c3 = - 

2 4 r 3  [p Tr F3 

since Tr F = 0. As usual, S6 is decomposed into the hemispheres H6, and H6 on each 
of which F and A are defined, giving 

c3 = -i ( Tr F: + [ H i  Tr F!). 
24?r3 

The 5-form of which Tr F3 is the exterior derivative (locally) is given by 

Tr F 3 = d T r ( F 2 A - i F A 3 + & A 5 )  (6.3) 

so 
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when A + ,  A -  and F,, F- are related by (2.11) and (2.12). We now expect that the 
5-form in the integrand of (6.4) is the exterior derivative of a 4-form together with a 
winding number Tr L5. After some algebra we obtain 

-1 
c j = j  J (dw4+&jTr L5)  

2 4 1 ~  s5 (6.5) 

where 

w4 = Tr( A+ d A+ L + f A: L + f A: L2 + A+LA+L - f A+ L3) .  (6.6) 

The w4 contribution vanishes by Stokes’ theorem and finally 

c3 = 4 I,. Tr L5 
240 IT 

where 

L =  U-‘dU 

and 

(6.7) 

1 
U = exp - q5 “A “ (6.9) 

F, 

is an element of SU(3). In the SU(3) sigma model the kinetic energy Lagrangian 

2, = !F: Tr(dpUd,U+) = -$F: Tr LpLp  (6.10) 

describes low-energy current algebra with F, - 190 MeV, but it does not describe 
anomalies and it possesses too much symmetry [ S I .  The addition of a Wess-Zumino 
(winding number) term solves these problems. This term is of the form of (6.7) above 
and may be written 

U Lfwz == J 4 Eabcde d 4 a . .  . d4e .  

We have, ignoring F,, 

Tr L5 = i5 Tr A 1 A 2 A 3 A 4 A 5 ~ a b c d e  d 4 a . .  . d 4 e  = -iEabcde d+a , , , d 4 e  

giving 

(6.11) 

(6.12) 

where HS is a hemisphere of S’. As in the two/three-dimensional case, this action is 
multivalued unless a = 2nN, so we have 

(6.13) 

To express this as an integral over spacetime we want a 4-form w whose 4 exterior 
derivative is w 5  

do, = w 5  = 4 Tr L5. 

Putting 

w 4 =  h ( 4 ’ )  Tr[(ln U ) L 4 ]  
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we see that h ( 4 )  satisfies the equation 

$ h ’ ( 4 2 ) 4 2 +  h ( d 2 )  = (1 - 4*)-”2. 

This is of the same type as (5.17) and its solution is 

h ( d 2 )  = ~ ( 4 2 ) - s ’ 2 [ s i n - i ( 4 2 ) ” 2 - ( ~ 2 -  44)i’2], 

Thus we find 

(6.14) 

(6.15) 

(6.16) 

which is of the form originally suggested by Wess and Zumino [12]. 

7. Conclusion 

We have shown how the topological notions of Chern class and winding numbers find 
an application in a number of physical situations. In gauge theories in two and four 
dimensions they describe magnetic monopoles and instantons. On the other hand the 
formalism of gauge theories in four and six dimensions is seen to yield the Wess-Zumino 
term in non-linear sigma models in two and four dimensions, giving in the former case 
torsion in the internal manifold and in the latter case the SU(3) topological skyrmion 
term. These results are summarised in table 1. 

Table 1. Topological structures in gauge theories and U models. 

~ _ _ _ _ _ _ _ _ _ _ ~ _ _ _ _ _ _ _  

Two dimensions Four dimensions Six dimensions 

U(1) Monopole” 
SU(2) instantonb 

YN2 in O(4)  
U model 
in two dimensions‘ 

SU(3) Ywr in SU(3) 
U model 
in four dimensionsd 

~ ~~ 

a Because ?r , (U(  1 )  j = Z. 
Because ?r3 (SU(2))  = Z. 
Because coset space 0 ( 4 ) / 0 ( 3 )  = S 3 .  
Because coset space SU(3)/SU(2) = Ss. 
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